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Abstract—Ultrafast soliton switching in a two-core fiber coupler is studied by controlling the coupling coefficients of the fiber. The 
numerical investigation of all optical soliton switching is done by using split step Fourier transformation algorithm.  An extended study 
is done for coupled mode NLSE and the behaviour of the launched pulse is studied by controlling the coupling coefficient (k)and it is 
found that faster switching takes place by rightly controlling the coupling coefficient  of the fiber coupler.  

Index Terms—Nonlinear Schrodinger Equation (NLSE), soliton coupling, all optical switching, split step Fourier method (SSFM).  

 

——————————      —————————— 
 

I. INTRODUCTION  
Nonlinear fiber optics is an active research field and is 

growing at a rapid pace. Erbium-doped fiber amplifiers 
revolutionized the design of fiber optic communication 
systems, including those making use of optical solitons, which 
stems from the presence of nonlinear effects in optical fibers 
[1]. The field has also paved way for the optical switch which 
is highly advantageous over the electrical switches in terms of 
less crowded network, reduced protocol issues, increased 
bandwidth and wide range of use. These nonlinear effects have 
opened entirely novel prospects of fiber optics in the areas of 
telecommunications, medicine, military application and 
academic research [2]. 

The coupled mode nonlinear Schrodinger equations 
(NLSEs) are numerically solved in studying the soliton 
switching in a two-core fiber coupler. The coupled mode 
NLSE is developed from the single mode nonlinear 
Schrodinger equation (NLSE) as the pulse profile in the optic 
fiber follows the NLSE. This NLSE is a partial differential 
equation that does not generally lend itself to analytic solutions 
except some specific cases where inverse scattering method 
can be employed. A numerical method is therefore necessary 
for an understanding of the nonlinear effects in optical fibers. 
Some of the numerical methods are Euler method, modified 
Euler method, higher order Runge-Kutta method, finite 
difference method, split step Fourier transform method 
(SSFM). In this paper, SSFM is used in solving the coupled 
mode nonlinear Schrodinger equation (CNLSE). 

II.SINGLE MODE NLSE 
 The Nonlinear Schrodinger Equation can be written as, 

 
𝜕𝐴
𝜕𝑧

+
𝑖𝛽2
2
𝜕2𝐴
𝜕𝑡2

= 𝑖𝛾|𝐴|2𝐴 −
𝛼
2 𝐴                           (1) 

Where 𝐴 is the amplitude of the pulse, 𝑧 is the propagation 
distance, 𝛽2 is the group velocity dispersion (GVD) parameter, 
𝛾 is the nonlinear parameter and 𝛼 is the fiber loss parameter. 
Fig.1. depicts the flow of SSFM employed in solving the 
NLSE [3]. 

The pulse propagation in a fiber is studied using NLSE for 
various values of fiber loss (𝛼), GVD (𝛽2) and nonlinear 
parameter (𝛾). It is observed in Fig.2,3,4,5 that if a hyperbolic 
secant pulse is launched in a lossless fiber (with its peak power 
(𝑃0) and pulse width (𝑇0) are chosen such that N=1), the pulse 
will propagate and is not distorted without any change in its 
pulse profile for long distances.  It is also observed in Fig.2 that 
the pulse evolution in the fiber is governed by GVD and self-
phase modulation (SPM) parameters. It is very interesting to 
know that when GVD and SPM parameters are rightly chosen 
such that sign of SPM and GVD parameters are opposite to 
each other, the interplay of GVD and SPM effects leading to a 
different behavior compared to the behavior of GVD or SPM 
alone. In anomalous dispersion regime, we find that the fiber 
supports solitons. 

 

III.COUPLED MODE NLSE 
The Coupled Non-linear Schrödinger equations are given 

by    

𝜕𝐴1
𝜕𝑧 =  −

𝑖𝛽2
2
𝜕2𝐴1
𝜕𝑡2 + 𝑖𝛾|𝐴1|2𝐴1  −

𝛼
2 𝐴1 + 𝑖𝐾𝐴2        (2) 
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𝜕𝐴1
𝜕𝑧 = �−

𝑖𝛽2
2

𝜕2

𝜕𝑡2 + 𝑖𝛾|𝐴1|2  −
𝛼
2
� 𝐴1 + 𝑖𝐾𝐴2                (3) 

 
Equation (3) can be spilt into, 

 

𝐷 =  −
𝑖𝛽2
2

𝜕2

𝜕𝑡2 −
𝛼
2                                                           (4) 

 
Fig. 1. Steps of SSFM algorithm for solving NLSE 

 
  
 
𝑁 = 𝑖𝛾 |𝐴1|2                                                                       (5) 
 
Where, D is the Differential operator that accounts for 

dispersion and losses within a linear medium and N is the 
nonlinear operator that governs the effect of fiber 
nonlinearities. 

𝜕𝐴1
𝜕𝑧 = (𝐷 +𝑁)𝐴1 +  𝑖𝐾𝐴2                                             (6) 

 

In general, dispersion and nonlinearity act together along 
the length of the fiber. The split step Fourier method obtains 
an approximate solution assuming that in propagating the 
optical field over small distance h, the dispersive and 
nonlinear effects can be assumed to act independently [1],[5]-
[10]. More specifically, propagation from 𝑧 𝑡𝑜 𝑧 + ℎ is carried 
out in two steps. In the first step, the nonlinearity acts alone 
and  𝐷 = 0. In the second step, dispersion acts alone, and 
𝑁 = 0 [4].Mathematically equation (6) is given by, 

 
 

𝐴1(𝑧 + ℎ, 𝑡) = exp[ℎ(𝐷 +𝑁)] 𝐴1(𝑧, 𝑡) + 𝑖𝑘𝐴2(𝑧, 𝑡)          (7) 
 
 
𝐴1(𝑧 + ℎ, 𝑡) = exp(ℎ𝐷) exp(ℎ𝑁)𝐴1(𝑧, 𝑡) +

             𝑖𝑘𝐴2(𝑧, 𝑡)                                                                            (8) 
 
The accuracy of the split step Fourier method can be 

improved by adopting a different procedure to propagate 
optical pulse over one segment from ‘𝑧’  to ‘𝑧 + ℎ’. In this 
procedure, 

𝐴1(𝑧+ ℎ, 𝑡) = �exp �
ℎ
2𝐷

� exp(ℎ𝑁) exp �
ℎ
2𝐷

��  𝐴1(𝑧, 𝑡) 
+ 𝑖𝑘𝐴2(𝑧, 𝑡)                                                    (9) 

 
The main difference is that the effect of nonlinearity is 

included in the middle of the segment than at the boundary. 
Because of the symmetric form of the exponential operations 
this scheme is known as the symmetrized spilt-step Fourier 
method. More specifically, the optical field 𝐴1(𝑧, 𝑡) is first 
propagated for a distance h/2 where dispersion is predominant. 
At the middle plane z+h/2, the field is multiplied by a 
nonlinear term that represents the effect of nonlinearity over 
the whole segment length ‘h’. Finally the field is propagated 
for the remaining distance h/2 with dispersion effects only. 
The solution of the pulse at a distance h is given according to 
equation (9) by, 

 

𝐴1(ℎ, 𝑡) = �exp �
ℎ
2𝐷

� exp(ℎ𝑁) exp �
ℎ
2𝐷

�� 𝐴1(0, 𝑡)    
+ 𝑖𝑘𝐴2(0, 𝑡)                                      

            (10) 
 
Where 𝐴1(0, 𝑡) and 𝐴2(0, 𝑡) are the amplitude of input 

pulse in the first and second core respectively. Equation (10) 
is a symmetrized equation with the dispersion parameter at the 
boundaries and the nonlinear parameter at the middle of the 
segment. 
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Step1: Dispersion only 

𝐴1 �
ℎ
2 , 𝑡� = exp �

ℎ
2𝐷

�𝐴1(0, 𝑡) +  𝑖𝑘𝐴2(0, 𝑡)                 (11) 

 
On using equation (4) on equation (11),  

    𝐴1 �
ℎ
2 , 𝑡� = exp �

ℎ
2
�−

𝛼
2 −

𝑖𝛽2
2

𝜕2

𝜕𝑡2
��  𝐴1(0, 𝑡)

+  𝑖𝑘𝐴2(0, 𝑡)                                              (12) 
 

On performing fast Fourier transformation (FFT) on (12),  
 

𝐴1 �
ℎ
2 ,𝜔� = exp � �−

𝛼
2 ×

ℎ
2
� + �

𝑖𝛽2
2  𝜔2 ×

ℎ
2
�� 𝐴1(0,𝜔) 

+ 𝑖𝑘 × 𝐴2(0,𝜔)                                            (13)  
 

On performing inverse FFT(IFFT) upon equation (13), 
 

𝐴1 �
ℎ
2 , 𝑡� = 𝐼𝐹𝐹𝑇 𝐴1 �

ℎ
2 ,𝜔�                                                  (14) 

 
The solution of the pulse at a distance h/2 is defined by 

equation (14) where only the effect of dispersion is considered.  

 

Step2: Nonlinearity only 
In this segment it is assumed that dispersion is zero.  The 

length of the nonlinear segment is ℎ and therefore the overall 
distance covered by step1 and step2 will be 3h/2. The solution 
of the pulse at the propagation distance 3h/2 is given by, 

 

𝐴1 �
3ℎ
2 , 𝑡� = 𝐴1 �

ℎ
2 , 𝑡� [expℎ𝑁 ] +   𝑖𝑘𝐴2(0, 𝑡)               (15) 

 
On using equation (5) in equation (15), 
 

𝐴1 �
3ℎ
2 , 𝑡� = 𝐴1 �

ℎ
2 , 𝑡� [exp(𝑖𝛾 |𝐴1|2  ℎ)]  

+   𝑖𝑘𝐴2(0, 𝑡)                                              (16) 
 

On applying FFT upon equation (16) we get the spectrum,  

𝐴1 �
3ℎ
2 ,𝜔� = 𝐹𝐹𝑇 �𝐴1 �

3ℎ
2 , 𝑡��                                         (17) 

Step3: Dispersion only 
In this segment the nonlinear effects is assumed to be zero. 

The overall distance covered by step1 through step3 will be 
2ℎ. The solution of the pulse at a propagation distance 2h is 
given by, 

 

𝐴1(2ℎ, 𝑡) = 𝐴1 �
3ℎ
2 , 𝑡�  �exp

ℎ
2𝐷 �   +   𝑖𝑘𝐴2(0, 𝑡)            (18) 

 
 

𝐴1(2ℎ, 𝑡) = 𝐴1 �
3ℎ
2 , 𝑡� �exp

  

�  
ℎ
2 �−

𝛼
2  −

𝑖𝛽2
2  

𝜕2

𝜕𝑡2
� � �  

+   𝑖𝑘𝐴2(0, 𝑡)                                             (19)   
 

 

On performing FFT upon equation (19), 

𝐴1(2ℎ,𝜔) = 𝐴1 �
3ℎ
2 ,𝜔� exp[ �

ℎ
2 �−

𝛼
2 +

𝑖𝛽2
2  𝜔2��   + 𝑖𝑘 

× 𝐴2(0,𝜔)                                                           (20) 

 

𝐴1(2ℎ ,𝜔) = 𝐴1 �
3ℎ
2 ,𝜔�  exp � �� −

𝛼
2  ×

ℎ
2
�

+  �
𝑖𝛽2
2  𝜔2 ×

ℎ
2
��� + 𝑖𝑘 

× 𝐴2(0,𝜔)                                                (21) 
 
 
Upon using equation (17) on equation (21) we obtain the 

solution for the pulse at a distance 2h. These three steps are 
repeated until the entire length of the fiber is covered. 

 

Step4:  
The final solution at the propagation distance 𝑧 is obtained 

by taking IFFT of the spectrum finally obtained by step3,  
 
𝐴1(𝑧, 𝑡) = 𝐼𝐹𝐹𝑇 [𝐴1(𝑧,𝜔)]                                          (22)  
 
 
We have analyzed the transmission of soliton in a dual 

core fiber coupler numerically through equations (2) and (3). 
The input pulses at both the input cores are given by 

 

𝐴1(0, 𝑡) =  𝐴0 exp �−
(1 + 𝑖𝐶)

2  
𝑡2

𝑡02
�                          (23) 

 
and  

 
𝐴2(0, 𝑡) =  0                                                                     (24) 

 
Where  𝐴0 is the peak amplitude of the input pulse. We 
analyzed the switching characteristics for various values of k. 
When k=0.08, we achieve a strong coupling. This is clearly 
depicted in Fig.6. In this figure we find that the entire energy 
form the first core is switched to the second core with a 
minimal distance of 10m. When k=0.5 we achieve a moderate 
coupling. In Fig.7 we find that the entire energy from the first 
core is switched to the second core only at a distance of 15m 
which is little greater than the previous case. Finally when 
k=0.04 corresponding to weak coupling we find according to 
Fig.8 that only  at 20m the entire energy is switched form the 
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first core to the second core. So in our experimentation we 
found that greater the coupling coefficient, faster the 
switching speed. Since it is our desires to have a faster 

switching speed, it is advisable to go for a coupling coefficient 
whose value is reasonably high enough.

 
 
 
 

 
 
 
 

             
 

Fig. 2. The output pulse profile of the single mode fiber when fiber loss α=0 db/m, GVD parameter 𝛽2 is –ve and nonlinear parameter ϒ is +ve 
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Fig. 3. The output pulse profile of the single mode fiber when fiber loss α=10−6 db/m, GVD parameter 𝛽2 is –ve and nonlinear parameter ϒ is +ve 

 
                                                                  

 
 

  Fig. 4. The output pulse profile of the single mode fiber when fiber loss α=0, GVD parameter 𝛽2 is +ve and nonlinear parameter ϒ is +ve 
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 Fig. 5. The output pulse profile of the single mode fiber when fiber loss α=0 db/m, GVD parameter 𝛽2 is –ve and nonlinear parameter ϒ is -ve 

 
 

      

 
 

Fig. 6. The output pulse profile of the coupled mode fiber for a distance of z=40m for coupling coefficient (k) =0.07854 and coupling length 20m. The 
input and output pulse profile, pulse evolution of core1 and core2 and their transmittance in their order respectively. 
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Fig. 7. The output pulse profile of the coupled mode fiber for a distance of z=40m for coupling coefficient (k) =0.05236 and coupling length 30m. The 
input and output pulse profile, pulse evolution of core1 and core2 and their transmittance in their order respectively. 

 
Fig. 8.  The output pulse profile of the coupled mode fiber for a distance of z=40m for coupling coefficient (k) =0.03927 and coupling length 40m. The input               
and output pulse profile, pulse evolution of core1 and core2 and their transmittance in their order respectively.  
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IV. CONCLUSION 
In this paper, we have studied the soliton switching in a 

two-core fiber coupler. We initially studied the pulse 
propagation in single mode fiber and then we extended our 
work for solving the coupled mode equations. The numerical 
method used to solve the coupled mode NLSE is the SSFM 
which is a very suitable method for analysis. The vital 
parameters of the optic fiber namely fiber loss (𝛼), GVD 
parameter (𝛽2) and the nonlinear parameter (𝛾) are varied for 
single NLSE and the effects are studied.  It is noted that for 
efficient pulse propagation, 𝛼 must ideally be zero and that 
𝛾 should be essentially positive and 𝛽2 should have a negative 
value for the fiber to support soliton.  Further, an algorithm 
based on SSFM is developed for solving CNLSE and the 
soliton switching is studied in the two-core fiber. The coupling 
coefficient (𝑘) is varied for various values and the 
transmittance for core 1 and 2 is observed. It is noted that the 
greater the value of 𝑘, the smaller the coupling length. This 
shows that faster switching is obtained by increasing the 
coupling coefficient.  
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